对于数据经营,你认识多少?
本文摘要:在产品运营的整个生命周期中,数据运营就是属于一种技能,通过数据分析发现解决问题,提高功率促进增加。从广义来讲,数据是反映产品和用户状态最真实的一种方式,通过数据辅导运营决策、驱动事务增加。与数据分析师的岗位不同,数据运营更加侧重支撑一线事务

在产品运营的整个生命周期中,数据运营就是属于一种技能,通过数据分析发现解决问题,提高功率促进增加。

从广义来讲,数据是反映产品和用户状态最真实的一种方式,通过数据辅导运营决策、驱动事务增加。与数据分析师的岗位不同,数据运营更加侧重支撑一线事务决策。而运用在产品运营的整个生命周期中,数据运营就是属于一种技能,通过数据分析发现解决问题,提高功率促进增加。

一、数据运营都需要学习些什么常识? 1. 明确数据分析的意图

做数据分析,有必要要有一个明确的意图,知道自己为何要做数据分析,想要达到什么效果。比如:为了评价产品改版后的效果比之前有所提高;或通过数据分析,找到产品迭代的方向等。

明确了数据分析的意图,接下来需要确定应该收集的数据都有哪些。

2. 收集数据的方法

说到收集数据,首要要做好数据埋点。

所谓“埋点”,就是在正常的功用逻辑中添加统计代码,将自己需要的数据统计出来。

现在干流的数据埋点方式有两种:

第一种:自己开发。开发时加入统计代码,并搭建自己的数据查询体系。 第二种:使用第三方统计东西。

常见的第三方统计东西有:

网站分析东西:Alexa、Google Analytics、百度统计

移动应用分析东西:Google Analytics、友盟、TalkingData、Crashlytics

不同产品,不同意图,需要的支撑数据不同,确定好数据指标后,选择合适自己公司的方式来收集相应数据。

3. 产品的根本数据指标 新增:新用户添加的数量和速度。如:日新增、月新增等。 活跃:有多少人正在使用产品。如日活跃(DAU)、月活跃(MAU)等。用户的活跃数越多,越有可能为产品带来价值。 留存率:用户会在多长时间内使用产品。如:次日留存率、周留存率等。 传达:均匀每位老用户会带来几位新用户。 流失率:一段时间内流失的用户,占这段时间内活跃用户数的比例。 4. 常见的数据分析法和模型

这里讲下漏斗分析法和AARRR分析模型

漏斗分析法

用来分析从潜在用户到最终用户这个过程当中用户数量的变化趋势,从而寻找到最佳的优化空间,这个方法被遍及用于产品各个要害流程的分析中。

比如,这个例子是分析从用户进入网站到最终购买商品的变化趋势。

从用户进入网站到阅读商品页面,转化率是40%;阅读商品到加入购物车转化率是20%等,那要找出哪一个环节的转化率最低,我们需要有比照数据。

比如第一个,进入网站到阅读商品,假如同行业水平的转化率是45%,而我们只有40%,那说明这个过程,没有达到行业均匀水平,我们就需要分析详细原因在哪里,再有针对性的去优化和改善。

当然,上面这是我们设计的一种抱负化的漏斗模型,数据有多是通过汇总后得出的。而真实的用户行为往往可能其实不是依照这个简略流程来的。此时需要分析用户为何要通过那么杂乱的途径来达到最终意图,考虑这中心有无可以优化的空间。

AARRR模型

这个是所有的做产品的小同伴都有必要要把握的一个数据分析模型。

所谓获取用户,就是拉新就是吸引新的用户。关于APP来说,拉新意味着新的用户下载注册;而关于众多的微信大众号、微博、贴吧运营个别而言,拉新指的是吸引新的粉丝重视。

在罗列你的渠道时,需要留意的是每一个渠道都需要有根有据,包括这个渠道是否是跟你的方针人群相符合、还有单价高或低以及渠道的二次传达行不行等等因素。而现在推广APP的渠道都会包括:

获取用户就是通过各个渠道拉新的过程。除了换量合作,在各大论坛贴吧等社区发帖,社群营销等免费方式。付费方式包括但不限于使用查找引擎、微信微博头条等自媒体、网盟广告、线下活动,互联网电视这些方式。增加黑客这种特其他方式也有人在使用。

拉新是否有用有一个评判规范——触发要害行为。比如用户下载了APP不一定会使用。要害行为依据产品的状况而定,它多是阅读文章,观看视频、发送音讯、开始游戏或者填写Email等。

好渠道其实不意味着用户量最大的渠道,也不是本钱最低的渠道。不断探究用户的喜好和散布,才干更加优化合理确实定投入策略,不断最小化CAC。每一个渠道获取用户的数量,质量,本钱都不一样,需要通过用户获取本钱(CAC),用户量,留存率,ARPU数剧等综合评判。

当然除了通过外部渠道取得新客户,假如用户体量较大,也能够从产品设计的角度完成拉新。

第一、主动奉告用户,有三种方式:APP的push音讯、EDM邮件、短信告诉,可以依据用户画像来进行音讯推送的时间,内容和用户。

第二、被动奉告用户,开屏广告,设置显着的进口,功用进口添加优惠便签,官网设置相关的轮播图等;如摩拜APP的开屏广告显示有网约车,滴滴APP的其他各种功用。

提高活跃度(Activation)

活跃度指用户使用产品的时间以及频率。每一个产品对活跃度的界说不一样,比如百度贴吧期望用户可以每天都能登录、发帖、评论;在线教育类产品,则更重视用户的学习时长、操练次数等。

活跃度建立在产品的核心价值上,如高质量的内容,愈来愈好的用户体验感,多功用的需求等,在用户最初使用的几十秒钟内抓住用户。

还有一些辅助手法,包括满足用户需求的活动、完善的用户激励体系,生长体系、添加用户与其他用户的互动的方式,还有APP的新手指引这类更详尽化的操作等。

一个比较全面的分析思路是,把用户从使用产品开始到完毕的每个流程单独列出来,站在用户角度,不断寻找可促活的途径。比如,分析新功用的转化率,使用过程的流畅性,延长用户的产品使用流程。

当然,我们还可以筛选出优质用户。假如某个渠道的用户,使用产品的时间和启动次数很可观,则应加大这个渠道的投入。此外,还有些用户只启动过一次产品,这类用户大多属于被动激活。

除了渠道,另外一个和活跃度相关的分析维度是版本。但这会发生两个错觉:用户习惯了现在的产品,所以不期望产品迭代更新;用户会要求你添加新功用。

例如,2006 年 Facebook 初次推出新闻频道,形成巨大的用户反弹。但跟着时间的推移,这个产品却成了Facebook 的核心功用。Facebook忽视了少数派的对立声音,坚持了自己的战略。

我们既不想刺激现有的忠诚用户,又需要获取下一个百万用户,添加功用比砍掉功用更容易。通常用户要求的功用是解决很小的便当问题,而不是真实的解决方案。我们需要积极地与用户交流,假如数据通知你新方向是正确的,那么疏忽发声的少数用户。

提高留存率(Retention)

用户开始使用产品并且一段时间后仍然继续使用,被认作是留存用户,而留存用户占当时新增用户的比例便是留存率。

用户在每一个应用中的生命周期是触摸—使用—抛弃或者遗忘的过程。在用户使用阶段,有用的促活手法也能提高留存,但相同重要的是挽回用户,而挽回用户有一个通用的流程。

先确定流失用户的规范;再建立一个用户流失模型,分析用户为什么流失,采纳相应的手法补救;同时通过EDM,短信等方式让用户知道你在召回;终究通过新手引导从头让用户熟悉产品操作,继续留存。

获取收入(Revenue)

现阶段移动应用获取收入的途径主要有三种:付费应用、应用内付费,以及广告。付费下载多见于苹果APP Store,广告是大部分开发者的收入来历,而应用内付费也较为遍及,比如游戏类,增值效劳类,自营商城等。特别说明,高德地图的盈利模式除了广告之外,还在于其本身的地图数据和用户数据与其他领域的结合。

我们通常选用ARPU(均匀每用户收入)值来判定收入规范。但关于一个既有付费用户,又有未付费用户的应用而言,还需要看 ARPPU(均匀每付费用户收入)。

因为触及到付费用户在悉数用户中所占的比例,假如付费用户的数量较低,那么就要考虑产品盈利方式是否有问题,包括定价,产品功用特性,变现方式等。

核算收入的同时也要考虑利润。核算利润的时分有一个指标:LTV(生命周期价值)。用户的生命周期是指一个用户从第一次启动应用,到终究一次启动应用之间,为该应用发明的收入总计。LTV – CAC的差值,就能够视为该应用从每一个用户身上获取的利润。

自传达(Refer)

社交网络的兴起,为产品带来了更强的生命力——基于社交网络的自传达。自传达,或者说病毒式营销,来历于病毒传达学,即一个现已感染了病毒的宿主在触摸其他宿主的过程当中也会被感染上病毒。K因子量化了“感染”的概率。

K = (每一个用户向他的朋友们发出的约请的数量) * (接收到约请的人转化为新用户的转化率)。当K 1时,用户群就会象滚雪球一样增大,可是绝大部分移动应用仍是有必要和其它营销方式相结合。

自传达除了产品足够好,传达过程的受众足够精确,可以引发用户的需求也相同重要,比如利益,虚荣心,稀缺性,试用等等。比如滴滴,美团的红包老友分享;付费用户免费约请朋友试用产品;转发朋友圈送礼品等。

以一个成功的微信百日跑活动为案例,展示自传达过程当中部分可调整的点。

1、拉新分发机制

对跑步KOL拉新做梯度激励手法:队每多10人,就发群红包;队满80人则队长可以取得跑鞋一双。同时每天在队长群中做群运营,晒队人数排行榜,“XX队满80人啦”,“XX队队长收取跑鞋”,让队长被充沛激励。

2、常规分享机制

在微信体系内,分享海报比分享链接更有目共睹。结合“赢取iPhone8”卖点的海报让用户发朋友圈时比较抢眼。同时分享流程也要做充沛的引导,比如“长按图片,发送给朋友”。

3、诱导分享机制

活动有报名费,所以设计了“报名成功后分享活动页到朋友圈立返20元现金”的奖励。因为跑步用户之间有公用的微信群,所以有必要是用户分享朋友圈才最有用。同时又忧虑用户发朋友圈时选择部分可见,或发完立删,所以补充了“需要10人通过朋友圈点开你的分享”这个机制。

A、分享机制的详细说明

B、对分享标题做改版,带来二次分享,凡是可以数据化的当地就可以做成排行榜,用户都在晒自己是第几个报名的,能激发人类心中攀比夸耀的心思,这就促进了分享。

C、使用H5设计“假活动图文”,在这个H5上可以自在界说阅读数(直接100000+),点赞数和用户留言。通过设计的用户留言,引导用户报名并对一些疑虑进行破解。

E、“10人点开阅读的提示”

朋友圈一人点开就提示一次。同时,部分人分享朋友圈后并没有10人打开,或错分享给老友或群,所以我们每两天,会用发模板音讯提示未领20元的用户再次发朋友圈。

二、数据运营需要分析什么? 拉新阶段:重视用户来历的类型:纯新用户(第一次注册)仍是老用户(再注册);贴片广告的用户来历有多少,弹窗广告的用户来历有多少等等。 转化阶段:重视转化率:200个用户阅读了你的宣传页面,注册的有100人,这100人就是完成了转化,转化率为50%(=100/200);相同的除了注册转化率还有付费转化率等等。 活跃阶段:重视用户在产品内的活跃量,不同的产品体现形式不同。例如,贴吧:发帖量、回帖量等等;视频网站:点击量,观看量等等。 留存阶段:重视留存或流失的用户量。例如,第一天新增的用户有300人,300人中第二天还在活跃的有100人,第三天还在活跃的呢?第四天呢?一直类推。

用户运营只是运营的职能之一,贯穿在各种产品的运营中。用户运营所重视的数据指标,不同行业、不同平台等等都有不同的侧重点。

依据运营的平台来划分:

网站运营:

(1)流量方面需要重视:

PV(page view)拜访页面发生的数据。 一个用户拜访了5个页面,那么就发生了5个? PV。 UV(user view)某个特定页面的访客数。一个页面一个账号无论点进去几回,UV都是1,因为只有一个访客。 VV(visit view)针关于全站的访客数。一个账号进入一个网站,无论这个账号阅读了这个网站多少个网页,VV都是1 ,因为这个网站只有一个访客。 IP:针关于全站的网络IP数。你在家用电脑登录了这个网站,之后你表哥也用同一台电脑登陆了他的账号,拜访了同一个网站,但这个时分IP仍是只有1,因为你和表哥用的同一台电脑,网络的IP地点也是一个。

(2)拜访方面需要重视:

跳出率:页面停留访客有300人,可是有150人不喜欢这个页面,选择脱离,那么跳出率就是50%(=150/300) 二跳率:官网页面停留访客有300人,有150人觉得这个网站很喜欢,于是点击阅读下一个页面,那么二跳率就是50%(=150/300)。以此类推还有三跳率,四跳率等等。 转化率:转化到最终产品意图页面的比率。假如是电商的话,最终意图就是下单,那么就是新增用户和转化到下单页面的用户 的比率。以此类推,还有付费转率,注册转化率等等。

(3)活跃方面需要重视:

DAU(daily active user)即 日活跃用户量。 MAU(monthly active user)即 月活跃用户量。

相关的,还可以有周活跃用户量、年活跃用户量等等。

(4)转化方面需要重视:(这里的转化,单指电商运营方面。与上文转化率做区分)

成单量:用户共成了多少单 付费金额:用户共付费多少元 客单价:付费金额/成单量=客单价。这里需要的是,每单均匀多少钱的数据 付费率:走到付费这一步的转化率

APP运营:

新增:新增的设备数(按手机型号分);新注册的设备数(注册新用户。) 活跃:活跃的设备数;活跃的用户数

次日留存率:例如,第一天新增300人,第二天还登录的有150.那么次日的留存率就是50%(=150/300)。以此类推,还有三日留存率(第三日登录数/第一天新增数)……n日留存率等等。

TAD:比如,7日TAD=第一天留存量+第二天仍在留存的数量……+第七天仍在留存的数量

用于核算七天内,一台设备活跃过几天。

(4)转化:这里也特指电商,同上文网站运营里的转化。

依据运营的行业来划分:

内容型行业:重视PV,UV,V V,帖子数,页面停留时间,分享数等等 社交类行业:重视发帖量,讲话数,PV,UV,活跃占比等等 电商类行业:重视出售收入,成单量,客单价等等 游戏类行业:重视活跃用户量,付费率,收入,ARPU(每用户均匀收入)等等

除了运营平台和运营行业两个划分角度外,还有很多划分角度,其间用户运营所要重视的数据指标都是有不同侧重的。

三、怎么进行数据分析 1、数据采集

好的数据源主要有两个根本的原则,一个是全,一个是细。

全:就是说我们要拿多种数据源,不能说只拿一个客户端的数据源,效劳端的数据源没有拿,数据库的数据源没有拿,做分析的时分没有这些数据你多是搞不了的。另外,大数据里边讲的是全量,而不是抽样。不能说只抽了某些省的数据,然后就开始说全国是怎样。可能有些省十分特殊,比如新疆、西藏这些当地它客户端跟内地可能有很大差异的。

细:其实就是强调多维度,在采集数据的时分尽量把每个的维度、属性、字段都给它采集过来。比如:像where、who、how这些东西给它采集下来,后边分析的时分就跳不出这些可以所选的这个维度,而不是说开始的时分也围着需求。依据这个需求确定了发生某些数据,到了后边真正有一个新的需求来的时分,又要采集新的数据,这个时分整个迭代周期就会慢很多,功率就会差很多,尽量从源头抓的数据去做好采集。

2、数据建模

有了数据之后,就要对数据进行加工,不能把原始的数据直接暴露给上面的事务分析人员,它可能本身是杂乱的,没有通过很好的逻辑笼统的。这里就牵扯到数据建模。首要,提一个概念就是数据模型。许多人可能对数据模型这个词发生一种畏惧感,觉得模型这个东西是什么高深的东西,很杂乱,但其实这个事情十分简略。

在数据分析领域领域领域,特别是针对用户行为分析方面,现在比较有用的一个模型就是多维数据模型,“在线分析处理”这个模型。它里边有这个要害的概念,一个是维度,一个是指标。

维度比如城市,然后北京、上海这些一个维度,维度西面一些属性,然后操作体系,还有iOS、安卓这些就是一些维度,然后维度里边的属性。通过维度交叉,就能够看一些指标问题,比如用户量、出售额,这些就是指标。比如,通过这个模型就能够看来自北京,使用iOS的,他们的全体出售额是怎样的。

3、数据分析方法

数据分析方法是有多种的,比如多维度工作分析、漏斗分析(文章前面现已做了简略分析)、回访分析、交叉分析等,在这里我们就挑一个交叉分析来做个案例分析。

交叉分析法:通常是把纵向比照和横向比照综合起来,对数据进行多角度的结合分析。?举个例子:

a. 交叉分析角度:客户端+时间

从这个数据中,可以看出iOS端每一个月的用户数在添加,而Android端在下降,整体数据没有增加的主要原因在于Android端数据下降所导致的。

那接下来要分析下为何Android端二季度新增用户数据在下降呢?一般这个时分,会加入渠道维度。

b. 交叉分析角度:客户端+时间+渠道

从这个数据中可以看出,Android端A预装渠道占比比较高,并且呈现下降趋势,其他渠道的变化其实不显着。

因此可以得出结论:Android端在二季度新增用户下降主要是因为A预装渠道下降所导致的。

所以说,交叉分析的主要作用,是从多个角度细分数据,从中发现数据变化的详细原因。

5. 怎么验证产品新功用的效果

验证产品新功用的效果需要同时从这几方面下手:

a. 新功用是否受欢迎?

衡量指标:活跃比例。即:使用新功用的活跃用户数/同期活跃用户数。

使用人数的多少还会受该功用外的很多因素影响,千万不可只凭这一指标判断功用好坏,一定要结合下面的其他方面综合评价。

b. 用户是否会重复使用?

衡量指标:重复使用比例。即:第N天回访的继续使用新功用的用户数/第一天使用新功用的用户数。

c. 对流程转化率的优化效果怎么?

衡量指标:转化率和完成率。转化率即:走到下一步的用户数/上一步的用户数。完成率即:完成该功用的用户数/走第一步的用户数。

这个过程当中,转化率和完成率能够使用(上)篇中提到的漏斗分析法进行分析。

d. 对留存的影响?

衡量指标:留存率。用户在初始时间后第N天的回访比例,即:N日留存率。常用指标有:次日留存率、7日留存率、21日留存率、30日留存率等。

e. 用户怎样使用新功用?

真实用户行为轨迹往往比我们想象的使用途径要杂乱的多,假如使用的数据监测平台可以看到相关数据,能引起我们的反思,为何他们会这么走,有无更简练的流程,以协助我们作出优化决策。

不论是市场也好,产品也好,运营也好,老板也好,我们都会有各式各样的数据需求,所以数据运营实际上是一个蛮受欢迎的岗位,可是真正要做得好不是那么容易的事情,因为数据是件较为杂乱的事情,设计的因子数据指标比较多。可是作为一个产品运营人员,时刻需要跟数据打交道,不会那么一点数据分析能力好像说不以前,所以根本的关于数据分析能力害的具备。

#专栏作家#

艺林小宇,微信大众号:cs-jy8,人人都是产品主管专栏作家。股事汇APP运营负责人,独立媒体人,喜欢用白话文讲述移动互联网时事抢手,专注于产品运营、策划、BD合作等领域。

本文原创发布于人人都是产品主管。未经答应,禁止转载。

题图来自PEXELS,基于CC0协议


人人都是产品主管(woshipm)是以产品主管、运营为核心的学习、交流、分享平台,集媒体、培训、社群为一体,全方位效劳产品人和运营人,建立9年举行在线讲座500+期,线下分享会300+场,产品主管大会、运营大会20+场,掩盖北上广深杭成都等15个城市,内行业有较高的影响力和知名度。平台集合了众多BAT美团京东滴滴360小米网易等知名互联网公司产品总监和运营总监,他们在这里与你一同生长。

相关内容